商品公告訊息
上帝的粒子:希格斯粒子的發明與發現
ISBN
9789862621516
作者
巴格特
原文作者
Jim Baggott
譯者
柯明憲
出版社
貓頭鷹出版
出版日期
2013/07/04
語言
繁體中文
裝訂
平裝
定價
320元
優惠價
79 253
庫存
0

商品介紹

《上帝的粒子:希格斯粒子的發明與發現》Higgs: The Invention and Discovery of the ‘God Particle’


若二十世紀最重要的科學是相對論,
無庸置疑,二十一世紀就是希格斯粒子!

◎ 首本最完整的希格斯粒子傳記
◎ Amazon讀者四星半推薦
◎ 諾貝爾物理學獎得主溫伯格專文推薦

耗資數十億美元、集結上千科學家、尋找長達五十年──希格斯粒子究竟是什麼?

為了尋找神祕的希格斯粒子,歐洲核子研究組織(CERN)集結了超過六千名科學家,耗資數十億美元,建造了大型強子對撞機,所處的圓形隧道有二十七公里長,堪稱由史以來最昂貴的科學實驗!科學家不計一切代價,到底尋找希格斯粒子有多重要?

希格斯粒子如何成為質量問題的解謎關鍵?

希格斯機制在一九六四年被發表,解釋了標準模型理論的質量問題。當理論中的粒子一一被發現,難以捉摸的希格斯粒子便成了標準模型的最後一塊拼圖。這段長達五十年的驗證過程,希格斯粒子終於在二○一二年七月被CERN研究團隊發現,科學界歡欣鼓舞,也顯示粒子物理學即將進入新紀元。

本書作者將時間拉回一百年前,從物質、能量、質量的概念開始說起,清楚描述粒子物理學的理論進程,隨著一個個理論的發明,也讓我們看見希格斯粒子的誕生。作者更帶領我們聆聽物理學家的討論,彷彿親自參與希格斯粒子的發現過程,經歷標準模型被驗證的歷史。

看看物理學家如何輪番上陣,時而獨撐大局,時而連袂出擊,一步步過關斬將,驗證了希格斯場。而看似撲朔迷離的希格斯粒子,又如何被粒子物理學家米勒輕鬆解釋,還說服英國政府掏錢贊助CERN呢?不僅如此,希格斯粒子的研究計畫為何在美國國會胎死腹中,卻在歐洲得到萬眾矚目,其過程也饒富趣味。

本書前言由諾貝爾物理學獎得主暨粒子物理學泰斗溫伯格專文推薦,可謂首本最完整的希格斯粒子傳記,書中清楚解釋眾多理論與實驗內容,細膩描繪不同理論的消長,直指希格斯粒子為標準模型的關鍵拼圖。尋找希格斯粒子的過程精彩可期,也為希格斯粒子發現後的物理發展留下伏筆。

目錄

好評推薦
深入導讀:希格斯粒子奇異之旅--高涌泉

前言--溫伯格

序幕 組成與物質

第一部 發明
 第一章 如詩般的邏輯概念
 第二章 不是個好理由
 第三章 無法理解這理論的價值所在
 第四章 對的想法,卻應用錯了問題
 第五章 我辦得到

第二部 發現
 第六章 捉摸不定的中性流
 第七章 非W粒子莫屬
 第八章 放手一搏
 第九章 美妙時刻
 第十章 莎士比亞的問題

尾聲 質量從何而來

尾注
詞彙表
中英對照表

序/導讀

推薦序

  許多重大科學發現已經透過科普書介紹給一般讀者,但這是我第一次看見有這麼一本書,裡頭大部分寫的卻是一項預期中的發現。CERN(與費米實驗室部分的合作)於二○一二年七月宣布他們很可能發現了希格斯粒子,這本書旋即出版,驗證了巴格特和牛津大學出版社卓越不凡的精力和冒險精神。

  這本書迅速出版,也驗證了這是眾所矚目的一次發現,所以如果我在這篇前言加入一些個人評論,談談物理學甫企及的成就,應該是很值得的一件事。常有人說,在尋找希格斯粒子的過程中,最岌岌可危的就是質量的起源。這麼說並沒有錯,但我們需要更進一步的解釋。

  到了八○年代,我們已經有個很好的理論,能全面性地說明所有已觀測到的基本粒子和它們互相作用的力(重力除外),而該理論最重要的要素就是: 對稱性,就像在電磁力和弱核力之間,那一種宛如家庭關係般美好的對稱性。電磁學是解釋光的基本學說,弱核力則允許原子核內的粒子透過放射性衰變被改變,而對稱性將這兩種力一起擺到單一的「電弱理論」架構底下。電弱理論的一般性質已經通過充分測試,最近在CERN和費米實驗室進行的實驗並不會危及其有效性,而且就算沒能找到希格斯粒子,電弱架構的正確性也不會遭受嚴重懷疑。

  但是電弱對稱性有個必然結果,如果我們不在理論裡加點新東西,包括電子和夸克在內的所有基本粒子都不會有質量,可是它們顯然有,所以電弱理論一定還有缺漏,缺了某種在實驗室或自然界裡還沒觀測到的新物質或場。尋找希格斯粒子也就等於是在尋找下面這個問題的答案:到底我們需要的新玩意是什麼?

  尋找這個新玩意不能只是拿高能加速器胡搞一通,然後就等著看會跑出什麼東西來。電弱對稱性是粒子物理學基本方程式的精確特性,不知何故,這對稱性非得打破不可,電弱對稱性不能直接套用到我們實際觀測到的粒子和力上頭。自南部陽一郎和戈德斯通在一九六○至六一年的研究成果之後,我們就知道在很多理論裡有可能發生對稱性破裂,不過這樣的對稱破裂也意謂著一定有新的零零質量粒子產生,但就我們所知,這種粒子並不存在。

  一九六四年,布繞特和恩格勒、希格斯、古拉尼、哈庚和基博爾等四組學者都獨立發現到,只需要賦予質量給那些力的媒介粒子,這些零零質量的南部─戈德斯通粒子在某些種類的理論裡可以消失無蹤。薩拉姆和我本人於一九六七至六八年提出的弱力和電磁力理論,裡頭就允許發生這樣的事。但是問題還是沒有解決,我們仍不知道實際在破壞電弱對稱性的,到底是什麼新物質或場。

  有兩個可能。第一個是散布在空間中,但迄今尚未觀測到的幾種場。就像地球磁場能區別北方和其他方向,這些場能區別弱力和電磁力,它們賦予質量給媒介弱力的粒子和其他粒子,但是讓光子(媒介電磁力的粒子)維持零質量。這些場被稱作「純量」場,意思是它們不像磁場,不會在一般空間中區別出方向性。在戈德斯通和後來的一九六四論文說明對稱破裂的範例中,首次引進了這種一般型的純量場。

  當薩拉姆和我將這種對稱破裂用來發展弱力和電磁力的現代「電弱」理論時,我們便假定對稱破裂的原因就是這種散布所有空間的純量場。(格拉肖、薩拉姆與沃德等兩組學者早就假設有這一類的對稱性存在,但並沒有作為他們的理論方程式的精確性質,所以這幾位理論學家沒有繼續往純量場的方向前進。)

  對這些會造成對稱性破裂的物理模型而言 (包括戈德斯通和一九六四論文所考慮的模型,以及薩拉姆和我的電弱理論),必然的結果就是,雖然有些純量場只會賦予質量給媒介力的粒子,但其他純量場會在自然界中創造出新的物理粒子,而且應該已經在加速器和粒子對撞機裡被創造、觀測到。薩拉姆和我發現,我們的電弱理論需要加入四種純量場,其中三種純量場用以賦予W+、W 和Z0粒子質量,而這三種粒子像是比較重的光子一般,是我們理論中媒介弱核力傳遞時的媒介粒子(CERN已經於一九八三至八四年發現了W+、W 和Z0粒子,而且它們的質量符合電弱理論的預測值)。剩下的第四種純量場,會引導出一個新的物理粒子,此粒子的特性正表現了純量場的能量和動量,這個粒子也就是物理學家尋找了將近三十年的「希格斯粒子」。

  但永遠有第二個可能性。或許散布所有空間的新純量場並不存在,也沒有希格斯粒子,而電弱對稱性是被稱之為「天彩力」(technicolour forces)的強大力量所破壞的。天彩力作用在全新類別的一種粒子上,而這些粒子因為太重了,所以還沒能被觀測到。像是超導理論當中就允許這樣的事發生。七○年代末期,蘇士侃和我分別獨立提出這種基本粒子的理論,預測有一大群被天彩力束縛在一起的新粒子。所以這下我們得二選一了:純量場?還是天彩力?

  CERN發現的新粒子對純量場造成對稱性破裂(而不是天彩力)投下重量性的一票,這就是這次發現如此重要的原因。

  但還得等許多工作完成,才能真正蓋棺論定。一九六七至六八年的電弱理論能夠預測希格斯粒子的全部特性,但沒辦法預測其質量;如今透過實驗,我們已經知道它的質量了,所以可以計算出希格斯粒子各種衰變的機率,並在接下來的實驗裡驗證這些預測。這得花上一點時間。

  這次發現的「類」希格斯粒子也給理論學家留下了一個難題:該如何理解希格斯粒子的質量?希格斯粒子是一種質量不會因為電弱對稱性破裂而增加的基本粒子,但在電弱理論的基礎原則下,希格斯粒子的質量可以是任何值。正因為如此,不管是薩拉姆還是我,才都無法預測它的質量。

  事實上,我們實際觀測到的希格斯粒子質量也叫人大惑不解,這就是所謂的「層級問題」(hierarchy problem)。既然希格斯粒子的質量決定了所有其他已知基本粒子質量的尺度,可能會有人猜想它的質量應該和另一個在物理學裡扮演基礎角色的質量很類似,也就是所謂的普朗克質量。普朗克質量是重力理論裡的質量基本單位(它是一種假想粒子的質量,這種粒子彼此間的重力強度跟間隔相同距離的兩個電子間的電力一樣),但是普朗克質量大約是希格斯粒子質量的十萬兆倍。所以,雖然希格斯粒子很重,重到我們需要建造巨大的粒子對撞機才能創造出來,但我們還是得問:為什麼希格斯粒子的質量這麼小?

  巴格特建議我或許可以在這裡加入一些個人觀點,談談在這個領域中想法的演變。我只提兩點。

  如同巴格特在第四章裡所描述的,早在一九六四年之前,安德森就認為零零質量的南部─戈德斯通粒子並不是對稱破裂的必要結果。為何我和其他粒子理論學家沒有被安德森的論點說服呢?當然這並不代表安德森個人不值得受到認真看待,因為在所有關注凝態物理學的理論學家裡,沒人比安德森更透徹地看出對稱原則的重要性,而這些原則已被證實在粒子物理學裡是至關重大的。

  我認為安德森的論點之所以普遍不被重視,是因為他的論點立基在像超導性這種可類比於「非相對性」的現象上(換句話說,「非相對性」的現象可以安全地忽略愛因斯坦的狹義相對論)。但是在一九六二年,戈德斯通、薩拉姆和我已經透過相對論的必然存在性(顯然很殘酷地)證明了零質量的南部─戈德斯通粒子是無法避免的。安德森的論點在非相對性的超導理論上是正確的,粒子理論學家隨時準備好要相信這一點,但是在基本粒子理論裡就行不通了,因為基本粒子理論不能不考慮到相對論。一九六四論文的研究成果清楚顯示,戈德斯通、薩拉姆和我的證明並不能應用到包含力的媒介粒子的量子理論當中,因為這種理論裡的物理現象雖然可以滿足相對論,但是在量子力學中,這些理論的數學公式卻違反相對論。

  這個因相對論導致的問題,就是為什麼儘管歷經艱苦努力,在一九六七年之後,薩拉姆和我都無法證明,電弱理論裡那些沒有意義的無限大,可以用類似於電磁量子理論當中消除無限大的方法來消除。巴格特在第五章裡提到,特胡夫特於一九七一年證明了消除無限大的方法,他使用了和韋爾特曼共同得到的技巧,延伸量子力學的基本原則,讓理論能夠以相容於相對論的方法被公式化。

  第二點是,巴格特在第四章裡寫到,我在一九六七年所提出的電弱理論論文裡頭沒有引入夸克,是因為我考量到該理論可能會預測出牽涉到所謂「奇異」粒子(strange particle)的作用過程,但事實上「奇異」粒子並沒有被觀測到。我真希望我當時的理由有這麼明確,其實我在該理論裡之所以沒有引入夸克,只是因為我在一九六七年時還不相信有夸克罷了。在從來沒有人觀測到夸克的情況下,我很難相信這是因為夸克比那些已被觀測到粒子(如質子和中子)還要重得多,畢竟這些已觀測粒子是由夸克組成的。

  就和大多數理論學家一樣,我一直到一九七三年格婁斯與韋爾切克,以及波利策這兩組學者的研究成果發表後,才完全接受夸克的存在。他們的研究顯示,在應用於夸克和強核力的「量子色動力學」理論當中,夸克彼此間的距離愈近,強核力就愈弱。我們之中有些人接著突然想到,如果是這樣,那麼當夸克距離較遠時,夸克之間的強核力就會違反直覺地增強,也許這股強大的力量使得組成原子的夸克們無法被拆開並且觀測到。直到現在還是沒有證據能證明這一點,但是大家普遍都接受了。量子色動力學在目前為止已經通過諸多測試,但還是無人有緣見到單一夸克。

  我很高興看到本書是以二十世紀早期的數學家諾特開場,因為沒有人比諾特更早看出對稱性在自然界的重要性。這提醒了我們,科學的傳統過程是,我們總是先嘗試猜測自然界的運作方式,然後交由實驗驗證,而如今科學家的成就,不過只是這項隆重傳統的最後一步。透過巴格特的這本著作,讀者應該能對擁有悠久歷史的科學有些許感受。

溫伯格
二○一二年,七月六日

推薦商品

TOP